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.olume change of transition. The technique em-
~loved by Bridgman requires that transformation
;-c ‘complete in order to measure the correct com-
oressibility of phase II; likewise, the correct com-
bressibility of phase I can be measured only if
undisturbed by the volume change of an oncoming
rransition. As opposed to this, the present tech-
nique will permit measurement of compressibility
of mixtures of the two phases without such error
because it is determined from a shift of peaks of
each phase.

Secondly, it has been observed that at higher
temperatures and pressures along the phase
boundary, the phase II peak would shift (phase I
peaks remaining constant in position) until it
emerged with the peak of phase I of same &kl
index, as transformation of phase II to phase I
progressed. Occasionally the two separate peaks
would merge into one broad, flat-topped hump.
This indicates diffraction coming from spacings
intermediate between the theoretical spacings that
would exist at the phase boundary in that P-¢
vicinity. A possible explanation for the hump
would be the distortion of the structures (pre-
sumably both phases) resulting from the volume
increase of the II-I transformation, and reduction
of grain size during the transformation.

It also should be mentioned that the increase in
transformation rate for I-II with increased
pressure-overstepping of the phase boundary at
constant temperature could be due in part to
deformation of the sample. McHARGUE and
YAKEL(?3) have shown that transformation of phase
I to phase II at low temperatures is accelerated by
working of the metal surface with a vibrating tool.
Although no complete rate curve has been re-
corded in this study it is very likely that as strains
in the bulk sample are removed by growth of
strain-free grains of the new phase, the rate of
transformation will decrease.

The lag in transformation of I-II with lowering
temperature at 15+ 1kb (see p. 386) also needs
explanation. In this instance there is a decrease in
volume. As the temperature was lowered deep into
the stability region of phase II the sudden com-
pletion of the transformation merely demonstrated
the long accepted fact that considerable over-
stepping of P-t conditions beyond the phase
boundary is often necessary to accomplish a solid-
state ~ transformation (e.g., see BRIDGMAN).(26)

3

The actual process may involve both nucleation
and growth, and the rates of these processes in-
crease as the difference in free energy between the
stable (IT in this case) and metastable phases
increases.

5. CONCLUSIONS

Direct X-ray examination under pressure of
metallic cerium has shown that the dimensions of

both face-centered cubic cells become identical at

high temperatures and pressures along the cerium
I-cerium II phase boundary. The data used for
the extrapolation of Adj; to zero along this boun-
dary show marked scatter, some of which is sug-
gested to be the result of previous sample history.
The extrapolation data give an end point region of
350-400°C and 20-22 kb.

The transformation rate of cerium I = cerium
IT is a function of the proximity to the phase
boundary, as well as temperature, and it is possible
to quench phase I so that it persists into the phase
IT stability region.

It appears that both the compressibility and
thermal expansion of the high-pressure (II) phase
are greater than those of the low-pressure (I) phase.

The peculiar coalescence of the 111 peaks with
time as phase II transforms to phase I at high
temperature is best explained as a distortion of the
structures of both phases as well as a breakdown in
grain size as the transformation proceeds.
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